Abnormal retinal development in the Btrc null mouse.
نویسندگان
چکیده
Previous microarray analysis revealed beta-transducin repeat containing (Btrc) down-regulation in the retina of mouse embryos specifically lacking cholinergic amacrine cells (CACs) as a result of the absence of skeletal musculature and fetal ocular movements. To investigate the role of Btrc in the determination of retinal cell fate, the present study examined retinal morphology in Btrc-/- mouse fetuses. The Btrc-/- retina showed a normal number of cell layers and number of cells per layer with normal cell proliferation and apoptosis. However, there was a complete absence of CACs and a decrease in tyrosine hydroxylase-expressing amacrine cells. The population of other amacrine cell subtypes was normal, whereas that of the precursor cells was decreased. There was also a reduction in the number of retinal ganglion cells, whereas their progenitors were increased. These findings suggest a role for Btrc in regulating the eventual ratio of resulting differentiated retinal cell types.
منابع مشابه
O-15: Reduced Fertilization After ICSI and Abnormal Phospholipase C Zeta Presence in Spermatozoa from the Wobbler Mouse
Background: Failed fertilization after intracytoplasmic sperm injection (ICSI) can be due to a reduced oocyte-activation capacity caused by reduced concentrations and abnormal localization of the oocyte-activation factor phospholipase C (PLC) zeta. Patients with this condition can be helped to conceive by artificial activation of oocytes after ICSI with calcium ionophore (assisted oocyte activa...
متن کاملTransdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10.
The homeodomain transcription factor Chx10 is one of the earliest markers of the developing retina. It is required for retinal progenitor cell proliferation as well as formation of bipolar cells, a type of retinal interneuron. or(J) (ocular retardation) mice, which are Chx10 null mutants, are microphthalmic and show expanded and abnormal peripheral structures, including the ciliary body. We sho...
متن کاملGenetic rescue of cell number in a mouse model of microphthalmia: interactions between Chx10 and G1-phase cell cycle regulators.
Insufficient cell number is a primary cause of failed retinal development in the Chx10 mutant mouse. To determine if Chx10 regulates cell number by antagonizing p27(Kip1) activity, we generated Chx10, p27(Kip1) double null mice. The severe hypocellular defect in Chx10 single null mice is alleviated in the double null, and while Chx10-null retinas lack lamination, double null retinas have near n...
متن کاملMutations in Lama1 disrupt retinal vascular development and inner limiting membrane formation.
The Neuromutagenesis Facility at the Jackson Laboratory generated a mouse model of retinal vasculopathy, nmf223, which is characterized clinically by vitreal fibroplasia and vessel tortuosity. nmf223 homozygotes also have reduced electroretinogram responses, which are coupled histologically with a thinning of the inner nuclear layer. The nmf223 locus was mapped to chromosome 17, and a missense ...
متن کاملRetinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ
PURPOSE Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental dynamics : an official publication of the American Association of Anatomists
دوره 238 10 شماره
صفحات -
تاریخ انتشار 2009